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Outline

» Sampling vs optimisation - overview of the classical theory

» Mean-Field Langevin Dynamics - training of one hidden layer neural
network viewed as an optimisation problem over Wassersatin space,
[Hu et al., 2019b)].

> Extensions to (some) recurrent neural networks
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Key messages of this mini course

» Shift of the perspective from optimising parameters to optimising measure
over parameters space

» Gradient flow on the space of probability constitute convenient framework
for the analysis of training neural networks

» Probabilistic numerical analysis provides quantitative bounds that do not
suffer from the curse of dimensionality



New era of overparameterized statistical models ?

under-parameterized /\ over-parameterized

Test risk
? “modern”
interpolating regime

> < Training risk;

interpolation threshold

COI;p—lexity of H
From Belkin. et.al. [Belkin et al., 2018].

» Need for new theory to study generalisation error. Classical Vapnik
dimension and Rademacher complexity doesn’t help.

» Overparametrised models can be optimal in the high signal-to-noise ratio
regime Montanari et.al [Mei and Montanari, 2019]

> Implicit Regularisation [Heiss et al., 2019], [Neyshabur et al., 2017]



Deep Learning: Key Questions

i) Function approximation theory: the challenge is to derive non-asymptotic
results; expressiveness in terms of width and depth; network architecture
design: feed-forward, convolutional, LSTM, ResNet, Attention Networks...

ii) Non-convex optimisation and effect of noise in stochastic gradient
algorithms, in general non-convex optimisation problems are NP-hard;
links with the optimisation; lazy and mean-field regimes in
overparametrised setting

iii) Generalisation error in particular in overparametrised regime.



(Noisy) Gradient Descent
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Optimisation on RY

> Consider F:RY 5 R
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Optimisation on RY

> Consider F: RY - R
» Define the (proximal) gradient descent, for n =0,1,...

. 1
= argmin { F() + - x = xfal |
2y
or equivalently (by the first order condition)

X1 +Y(VxF)06G10) = X

» As learning rate v — 0, x” converges to

d
% = ~(TF))
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Gradient flow on RY

» Continuous view point aka gradient flow

dx: = —(VF)(x:)dt

> F is decreasing along gradient flow (x)

dF (xt) = (VxF)(xt)dxe = —|(V<F)(x)|°dt .

» From here convergence to a local minimum can be established

» When F is strongly convex 3lx* s.t F(x*) = minsF(x) the GF converges
to x*



Rate of convergence via Polyak-Lojasiewicz inequality

» Recall

& (Flxe) = miny F(y) = SF(x) = ~(V2F)(xe) Pt



Rate of convergence via Polyak-Lojasiewicz inequality

» Recall

& (Flxe) = miny F(y) = SF(x) = ~(V2F)(xe) Pt

» Polyak-tojasiewicz inequality: for all x € R? there exists A > 0 s.t

F(x) — min, F(y) < A[V.F(x)[?



Rate of convergence via Polyak-Lojasiewicz inequality

» Recall
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» Recall

& (Flxe) = miny F(y) = SF(x) = ~(V2F)(xe) Pt
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Rate of convergence via Polyak-Lojasiewicz inequality

>

Recall

& (Flxe) = miny F(y) = SF(x) = ~(V2F)(xe) Pt

Polyak-tojasiewicz inequality: for all x € RY there exists A > 0 s.t

F(x) — min, F(y) < A[V.F(x)[?

Then
& (Floxe) — mingF(y)) < =X (F(xe) — min,F(»))
= F(x) — min,F(y)) < e (F(x) — min,F(y)).

There are non-trivial non-convex functions that satisfy PL inequality.

Different exponents in PL inequality imply different rates of converegnce
of GF.
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Noisy gradient descent R
» Consider noisy gradient descent with o > 0

dX; = —(V<F)(X:)dt + cdW,

10/47



Noisy gradient descent R
» Consider noisy gradient descent with o > 0

dX; = —(V<F)(X:)dt + cdW,

» A natural question: u: := £(X;) — ? when t — oo.

10/47



Noisy gradient descent R
» Consider noisy gradient descent with o > 0

dX; = —(V<F)(X:)dt + ocdW,

» A natural question: u: := £(X;) — ? when t — oo.
> PDE for the law. Let ¢ € C*(RY)

I EBX] = E | ~(VF)(X) - Vo(X,) + &-V26(X,)

10 / 47



Noisy gradient descent R

» Consider noisy gradient descent with o > 0

dX; = —(V<F)(X:)dt + cdW,

» A natural question: u: := £(X;) — ? when t — oo.
> PDE for the law. Let ¢ € C*(RY)

L Blp00)] =B [-(VA0X) - Vo0 + 5 V)]
» Suppose that p: admits density u(t, x)
%/Rd d(x)u(t, x)dx = /IRd (—(VF)(X)V¢(X)+ %V%&(x)) (2, x)dlx
= [, (a0t 0) + F V(e 0) e
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Noisy gradient descent R
» Consider noisy gradient descent with o > 0

dX; = —(V<F)(X:)dt + cdW,

» A natural question: u: := £(X;) — ? when t — oo.
> PDE for the law. Let ¢ € C*(RY)

2 Blo00)] = E [~(VAI(X) - Vo) + T V6(x)]
> Suppose that u: admits density (¢, x)
& [ otantexax= [ (<FTo00 + S0 ) e )
= [, (a0t 0) + F V(e 0) e
> Since this holds for all ¢, i = u(t, x) solves

2
Ocp = div((VF)p) + %Au
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» Under mild conditions on VF, X is ergodic with invariant measure

—2
m(dx) = e 2 ¥y 7= [ Py
Z R

» In other words for all Xo, u: = £(X¢) converges weakly to 7

» Indeed plugging in 7 into right-hand side of the PDE:
% F(x)
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Gibbs measure

» Under mild conditions on VF, X is ergodic with invariant measure

(i) = —e 2 W 7= [ Ty
Z R

» In other words for all Xo, u: = £(X¢) converges weakly to 7

» Indeed plugging in 7 into right-hand side of the PDE:
% F(x)
1 / ( VF()Vo(x) + & v ¢(x)> ZF0) g
= —/ ( VFE( x)V(;S(X)—i— Vd)( ) 2VF(X)) e 2 F0) g — 0

— ZE[B(x)] =0

» Hence 7 is a stationary solution to the PDE. Extra work needed to prove
that pu: = m.
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Laplace method

>
2

m(dx) = %e_ 52 F0 gy
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Laplace method

>

» Consider

6>0

7(F(X) > min F +8) = %

1 X)>min o
<f {F(x)>min F+6} €

_ B
/1{F(x)>minF+6}e 72 F0 gy

2 F) dx

- f L{F(x)<min F+s}€ ©

=AY g



Laplace method

>

» Consider 6 > 0

. 1 _ 2 Fx
RF(X) > minF +8) = 7 [ Lo rrsye = Vs

< f 1{F(x)>min F+6} eiﬁF(X)dX

< .
J Lirey<min Frsye 2 FO g

> F(x)<minF +6 = 5 < e
3 )
J 1F (9> min F+6}37?(F(X)7(mm o) gix
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Laplace method

>

» Consider 6 > 0

. 1 _ 2 Fx
RF(X) > minF +8) = 7 [ Lo rrsye = Vs

< f 1{F(x)>min F+6} eiﬁF(X)dX

< .
J Lirey<min Frsye 2 FO g

] 1 1
> F(x) <minF+6 = —r5 < =y

J LiFpo>minFisye” 2 (Fe)=(min F40)) g

w(F(x) > min F +0) <
(F() ) J L{F(<min F4ay dX

—+0asoc—0

» As o0 — 0 the 7 concentrates near minimiser of F
» No Convexity required!. See [Hwang, 1980].



Differential Calculus on P(RY)
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Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(R?) — R is C' if there exists a continuous map
& P(RY) x R — R such that for any m,m' € P(R?)

V(1 —s)m+sm')— V(m) 2%

lim ————>— >0 " — [ —Z(m,y)(m — m)(dy).

SN0 S Jra Om

» Note % is defined up to normalising constant. We take

/R OV (m,y)m(dy) = 0

a 0m

14 / 47



Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(R?) — R is C' if there exists a continuous map
& P(RY) x R — R such that for any m,m' € P(R?)

V(1 —s)m+sm')— V(m) 2%

lim ———— >~ 2= [ —(m,y)(m — m)(dy).

s\.0 s Jra Om

» Note % is defined up to normalising constant. We take
[, sm(mymidn =0
d
> Take ) € (0,1). Define m* := m + A\(m’ — m) and note that

vim) = vim = [ [ 2y~ m(ay)an

14 / 47



Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(R?) — R is C' if there exists a continuous map
& P(RY) x R — R such that for any m,m' € P(R?)

!@w -/ jl\;(m y)(m' = m)(dy).

» Note % is defined up to normalising constant. We take

[, sm(mymidn =0

> Take ) € (0,1). Define m* := m + A\(m’ — m) and note that

vim) = vim = [ [ 2y~ m(ay)an

» Note that regularity of %Y (m,y) in y may determine the metric (e.g total
variation or Wassersteln) in which V is Lipschitz.
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Intrinsic/Lions/Wasserstein derivative

Definition 2
If &£ is C' in y the intrinsic derivative D,V : P(RY) x R? — R? is defined by

DnV(m,y) = (%?—X) (m,y)

uet et al., 2015
Assume that V is C* with % is Ctin y and D,V is continuous in both
variables. Let b: RY — RY be a Borel measurable and bounded. Then

= /d DV (m)(y) - b(y)m(dy).

Lemma 1 ([Cardalia

lim V((Id + sb)#m) — V(m)
sN\0 S R
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Intrinsic/Lions/Wasserstein derivative

Proof.

Let m®> := m + A((/d + sb)#m — m). Then by change of variables formula
and mean value theorem

V((Id + sb)#m) — V(m) = / / m**, y)((Id + s b)#m — m)(dy)d\
[ ] (Sm>y+ 5ot - %(m“,y)) m(dy)dA

s/ol//o1 DnV(m**,y + tsb(y))b(y)dt m(dy)dX

> Example: V(m) = [o4 f(x) m(dx) = (f, m).

%(m, y)=f(y) and DnV(m,y)=V,f(y).

16
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Variational perspective on noisy gradient descent
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Variational perspective

» Define )
VO (m) = /F(x)m(dx)Jr %H(m),

where relative entropy H for m € P(R?)

H(m) = {I]Rd m(x)log m(x)dx if mis a.c. w.r.t. Lebesgue measure

00 otherwise
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Gradient flow in 2-Wasserstein metric
» From work of Benamou-Brenier we know that

Wa (o, pa) = inf {/ Ix — y|*m(dx,dy) : 7€ Plan(uo,ul)}

1
= inf {/ /|us|2us(dx)ds D st Osps + div(vsps) = 0, phe=i = ,u,-}
0

19 /47



Gradient flow in 2-Wasserstein metric

» From work of Benamou-Brenier we know that
Wa (o, pa) = inf {/ Ix — y|*m(dx,dy) : 7€ Plan(uo,ul)}

1
= inf {/ /|1/5|2us(dx)ds D st Osps + div(vsps) = 0, phe=i = ,u,-}
0

> Let b: R x R? — R? be a vector field and consider gradient flow (we take
b so that PDE is well defined)

8t Vi = diV(btl/t)

19 /47



Gradient flow in 2-Wasserstein metric

» From work of Benamou-Brenier we know that
Wa (o, pa) = inf {/ Ix — y|*m(dx,dy) : 7€ Plan(uo,ul)}

1
= inf {/ /|1/5|2us(dx)ds D st Osps + div(vsps) = 0, phe=i = ,u,-}
0
> Let b: R x R? — R? be a vector field and consider gradient flow (we take
b so that PDE is well defined)

8t Vi = diV(btl/t)

» Find b so that V7(v:) \ as t — oo
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Variational perspective
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Variational perspective

» For e, A >0 let uf"s = Ut + A(Vetre — vt) we have

0: V(1) = I|me (VU(I/H_€) V()

=g (/ /W y)(Vere —ut)(dy)cu>

> Note that ;"¢ — v; as € — 0 hence

0.V (w) = [ S n)Bun(ay) = [ S ey )div(be) ()

— 7/ (w%) (ve, y)beve(dy)

» To have V7 () \ take

by) = (9,5 ) )



Variational perspective
» Recall that V7 (m) = (F, m) + %Q(Iog m, m)

2L (m,y) = F(y) + % (log m(y) +1)

b() = (%50 ) (my) = (9,)0) + GV, log(m(y)




Variational perspective
» Recall that V7 (m) = (F, m) + %Q(Iog m, m)

V2 (m.y) = Fly) + G (og m(y) + 1)

om
ove o?
be(y) = (Vv ) (my) = (VyF)(y) + 5 Vy log(m(y))
» Plug this back into the gradient flow equation
2
Oy = div (((VF) + %V Iog(ut)) l/t)

2
deve = div (VF)ue) + %Aut



Variational perspective
» Recall that V7 (m) = (F, m) + %Q(Iog m, m)
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Variational perspective
» Recall that V7 (m) = (F, m) + %Q(Iog m, m)

V2 (m.y) = Fly) + G (og m(y) + 1)

om
ove o?
be(y) =\ Vy— ) (my) = (VyF)(y) + = Vy log(m(y))
» Plug this back into the gradient flow equation
2
Oy = div (((VF) + %V Iog(ut)) z/t)
o2
8tVt = le((vF)llt) + 7Al/t

» What is a minimiser of V°? Note V? is strictly convex hence the first
order condition

ove

om

(m,y) = F(y) + %(log m(y) + 1) = const

2
m*(y) = e 22" . const



JKO

> Similarly as in RY we could define Minimising Movement Scheme
T —argmm{V m) + " Wa(m, un)}

» From celebrated JKO paper we know that

v’ — v, where Oy = div ((Vy 6(;/ ) l/t)
v
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Rate of convergence via Polyak-Lojasiewicz
2
> Note that F = — % log m™ + const. Hence

V7 (m) = / Fm(dx) + %-H(m) = U;H(m|m*) B

S - P _ o? m(y)
(25 ) () = (2P0 + 5 9 loatm(y)) = 5 (0 tos 0 )
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Rate of convergence via Polyak-Lojasiewicz
2
> Note that F = — % log m™ + const. Hence

V7 (m) = / Fom(ds) + %-H(m) = % H(m|m") + const

S - P _ o? m(y)
(25 ) () = (2P0 + 5 9 loatm(y)) = 5 (0 tos 0 )

> Note that
2

0v (v = [|(7. %) en| wia)

can be written as

O H(we|m*) = 7%2/‘(% log :;%) (ve,y)

ve(dy)
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Rate of convergence via Polyak-Lojasiewicz
2
> Note that F = — % log m™ + const. Hence

V7 (m) = / Fom(ds) + %-H(m) = % H(m|m") + const

S - P _ o? m(y)
(25 ) () = (2P0 + 5 9 loatm(y)) = 5 (0 tos 0 )

> Note that
2

0v (v = [|(7. %) en| wia)

can be written as

2
e H(ut|m*):f%/‘<vylog

Vt()’) ?
e ) )| )

m*(y)

» Polyak-Lojasiewicz inequality that grants exponential convergence is given
by: for all m € P, thereis A > 0

() <3 [ (9 1oz 120 ) ()

2

m(dy)




Rate of convergence via Polyak-Lojasiewicz

>

2
Note that F = —%- log m™ + const. Hence

V7 (m) = / Fom(ds) + %-H(m) = % H(m|m") + const

(v ‘Wo) (m,y) = (V,F)(y) + %ZVy log(m(y)) = %2 (vy log 7). )

Y sm m*(y)
Note that
- sV° 2
o0V (Vt):_/'<vy6—y> (Vhy) Vt(dy)
can be written as
o? ve(y) 2
ocHwdm) = =% [ |(¥108 295 ()| st

Polyak-Lojasiewicz inequality that grants exponential convergence is given
by: for all m € P,c thereis A >0

() <3 [ (9 1oz 120 ) ()

This is nothing but log-Sobolev inequality.

2

m(dy)




One hidden layer neural network
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Non-covex minimization problem

» Consider network

LS Bhaplans-2) = [ Bolar 2) mi(as,de).
=il Rd
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Non-covex minimization problem

» Consider network

LS Bhaplans-2) = [ Bolar 2) mi(as,de).
=il Rd

> Denote @(x, z) = Bp(a - z) for x = (a, B) € R”*", we should minimize,

1 2 i 02 P,

X = d)(y—— gﬁx',z)ydy,dz +— |x|7,
R S G ECRD R
=:U(x)

=:F(x)

which is non-convex.

» Gradient descent with learning rate 7 > 0:
i i o’ 2 .
X1 = Xk — TV F(Xk)-f—?U(Xk) , i=1,...,n.

Here x' = (o/, ') € R x RP.

» No hope for deterministic gradient to find global minimum....



Approximation with gradient descent

» In practice noisy (regularised), gradient descent algorithms are used:

i i R 1., i
s =it 7 [y =LY 60,2 ) Ve ) (e )
RxRD n3
_2 . .
— 5 VoUd) + oV,

where & are i.i.d. samples from N(0, Iy).



Approximation with gradient descent

» In practice noisy (regularised), gradient descent algorithms are used:

i i R 1o o, s i
s =it 7 [y =LY 60,2 ) Ve ) (e )
RxRD n3

—2 ; )
- % vxi U(X/l() + U\/F£;< ;

where & are i.i.d. samples from N(0, Iy).

» Taking weak limit gives

; - L oy Ay
ix; = [ / ¢<y 1 Zsa(xaz))vxw(xf,z) v(dy, dz)
RxRD n =)

|9

Vi U(X{ )} dt + odW/,

26
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Mean-field limit and convexity

> Write
IR
= ~ I’ = ~ , n d X
; ,-E,l o(x', z) /Rdcp(x z)m"(dx) as n — oo
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Mean-field limit and convexity

> Write

Iy
= Z@(X',z) = / &(x,z) m"(dx) as n— co.
n< Rd
i=1
> The search for the optimal measure m* € P(R?) amounts to minimizing

P(RY) 3 m > RXRD¢<y—/Rd B(x, 2) m(dx)>y(dy,dz) . )

which is convex (as long as ®) i.e

F((1—a)m+am’) < (1—a)F(m)+ aF(m') forall a € [0,1].

» Observed in the pioneering works of Mei, Misiakiewicz and
Montanari [Mei et al., 2018], Chizat and Bach [Chizat and Bach, 2018] as
well as Rotskoff and Vanden-Eijnden [Rotskoff and Vanden-Eijnden, 2018].
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Derivation of MFLD
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Derivation of MFLD

FY(x', ... x (

axi = — (N@X,FN(x}, B % VU(x;))dt +odW, .

2 |

» We expect to have, as N — oo,

X = — (( §F> (e, Xe) + VU(Xt)) dt + odW, t € [0,00)

my = Law(X;) t € [0,00).
» Fokker—Planck

OF o? o? d
otm =V - (( (Vﬁ) (m,-) + ?VU)m—i— ?Vm) on (0,00) x RY.

XN: ) / ( XN: (xJz)> (dz, dy).



Energy functional - Variational Perspective
» We want to minimise
2
V°(m) := F(m) + Z-H(m),

where relative entropy H for m € P(R?)

H(m) = Jza m(x) log (';'((;())) dx if misa.c. w.r.t. Lebesgue measure
0 otherwise

and Gibbs measure g:
g(x) = e Y™ with U s.t. / e YW gy =1,
Rd

» Mean field Langevin Dynamics

2
dX; = — ((VSF) (mye, X¢) + %VU(Xt)) dt +odW; t € [0,00).

m

» U gives contraction, W smooths the law



Assumptions |

Assumption 3

F € C! is convex and bounded from below.

Assumption 4

The function U : R? — R belongs to C*. Further,
there exist constants Cy > 0 and C{; € R such that

VU(x) - x> Cy|lx|> + C, forall xecR".

VU is Lipschitz continuous.




Convergence when o 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the
sequence of functions V° = F 4+ % H converges in the sense of '-convergence
to F as o0 \ 0. In particular, given a minimizer m*° of V', we have

limsup F(m™?) = inf F(m).
o—0 mePa(RY)
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Convergence when o 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the

sequence of functions V° = F 4+ % H converges in the sense of '-convergence
to F as o0 \ 0. In particular, given a minimizer m*° of V', we have

limsup F(m™?) = inf F(m).
o—0 mePa(RY)

Proof outline: Let f, : X — R. Recall that 7, -converge to f, if

> for every sequence x, — x f(x) < liminf,_ oo fn(xn):

> for every x € X, there is a sequence x, converging to x such that
f(x) > limsup,_, o fa(xn):

> To get liminf,, 0 V"(m,) > F(m) use l.s.c. of entropy.
> To get limsup, o V?"(m,) < F(m) smooth with heat kernel



Characterization of the minimizer

Proposition 6

The function V° has a unique minimizer m* € Pa ..(R9)

Moreover, m* = arg min,,c p(ray V'

The function V'’ has a unique minimizer m* € Pa ..(R?). Moreover,
m* = arg min,cpgdy V7 iff

2

2
oF (m*,-) + % log(m™) + %U is a constant, Leb — a.s,

om

or equivalently

3



Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
S = {m - L H(m) < V(M) — inf F(m')} :
2 m’ €P(RY)

Since V7 is |.s.c. it attains its minimum on S, say m* so V7(m*) < V?(m) for
allmeS.



Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
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Voi(m*) < Vo(m) < —
(m*) < V(@) < % nf

so m* is global minimum of V. Since V is strictly convex it is unique.



Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
S = {m - L H(m) < V(M) — inf F(m')} :
2 m’ €P(RY)

Since V7 is |.s.c. it attains its minimum on S, say m* so V7(m*) < V?(m) for
allmeS.

If m¢ S then
2

T H(m)+ inf F(m')< V7(m)

Voi(m*) < Vo(m) < —
(m*) < V(@) < % nf

so m* is global minimum of V. Since V is strictly convex it is unique.

Step 2 (sufficient condition): Assume m”* satisfies first order condition then for
any € >0 and m € P(R?) we have

V(1 —e)m" +em)— Vo (m")

Vo (m)— Vo (m*) >

oF , . o’ . 0’ .
> —(m, - —_— — =0.
_/Rd (5 (m*,-) + 2 log m™ + 2U)(m m*)(dx) =0



Connection to gradient flow

» Recall

2 2
om=V - ((DmF(m, D+ %VU)m + %Vm) on (0,00) x R?,
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Connection to gradient flow

» Recall

2 2
om=V - ((DmF(m, D+ %VU)m—&— %Vm) on (0,00) x R?,

» |f m* is such that

oF , . o? o?
O m*, )+ Ttog(m)+ LU i m* — as.
3 (m*,-) > og(m™) > U is a constant, a.s
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Connection to gradient flow

» Recall

2 2
om=1V - ((DmF(m,~) + %VU)m—&— %Vm) on (0,00) x R?,

» |f m* is such that

oF , . o? o 0 5
m(m )+ > log(m™) + 7U is a constant, m* — a.s.

» Then m* is a stationary solution of gradient flow PDE

2 2
V. ((DmF(m*, )+ %VU)m* + %Vm*> =0



Mean-field Langevin equation

We see that if
2
dX; = — <DmF(mt,Xt) + %VU(Xt)> dt + odW, t € [0, 0)
m; = Law(X;) t € [0, 00)

has a solution then (m;):>o solves the Fokker—Planck equation

2 2
oem=V - ((DmF(m,-) + %VU)m—F %Vm) on (0,00) x R?.



Mean-field Langevin equation

We see that if
2
dX, = — (DmF(mt,Xt) + %VU(XJ) dt + ocdW; t € [0, 00)
m; = Law(X;) t € [0, 00)

has a solution then (m;):>o solves the Fokker—Planck equation

2

2 2
oem=V - ((DmF(m,-) + %VU)m—F O—Vm) on (0,00) x R?.

Key challenges in studying invariant measure(s)

» Drift not of convolutional form [Carrillo et al., 2003]
Otto [Otto, 2001], [Tugaut et al., 2013]

» To establish — convergence need result to hold for all o, so works
of [Bogachev et al., 2019] and [Eberle et al., 2019] do not apply.



Assumptions Il

Assumption 7

Assume that the intrinsic derivative D F : P(R?) x RY — R? of the function
F : P(RY) — R exists and satisfies the following conditions:

D F is bounded and Lipschitz continuous, i.e. there exists Cr > 0 such
that for all x,x € R? and m, m’ € P>(RY)

|DmF(m, x) — DmF(m',x")| < Ce(|x — X'| + Wa(m, m")) .

DmF(m,-) € C*(R?) for all m € P(R?).
VDnF : P(RY) x RY — R x R? js jointly continuous.

36
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Energy Dissipation

Theorem 2
Let mg € P2(RY). Under Assumption 4 and 7, we have for any t > s > 0

Vo (me) — V° (ms)

2
// D F(my, x +7vmr( )+ VU(X) my(x) dx dr.
Rd

@
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Energy Dissipation

Theorem 2

Let mg € P2(RY). Under Assumption 4 and 7, we have for any t > s > 0

Vo (me) — V° (ms)

2
// D F(my, x +7vmr( )+ VU(X) my(x) dx dr.
Rd

Proof outline: Follows from a priori estimates and regularity results on the

nonlinear Fokker—Planck equation and the chain rule for flows of measures.

@

3



Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and mg € Up=2P,(R?). Denote by
(m¢)e>o0 the flow of marginal laws of the solution to MFLD. Then, there exists
an invariant measure of of MFLD equal to m* := argmin,, V°(m) and

Wa(me,m*) — 0 as t — co.




Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and mg € Up=2P,(R?). Denote by
(m¢)e>o0 the flow of marginal laws of the solution to MFLD. Then, there exists
an invariant measure of of MFLD equal to m* := argmin,, V°(m) and

Wa(me,m*) — 0 as t — co.

If V was continuous then result would follow from tightness of (m;):>o and
Theorem 2. The entropy is only |.s.c.

Proof key ingredients: Tightness of (m;):>0, Lasalle’s invariance principle,
Theorem 2, HWI inequality.



Convergence, step 1: invariance

Let S(t)[mo] := m:, marginals of solution to MFLD started from my.
Define w-limit set
w(mo) := {/L € Pa(R?) : 3(tn)nen s.t. Wa(me,, 1) — 0 as n — oo} .

Then

i) w(mp) is nonempty and compact (since for any t > 0, (ms)s>; is relatively
compact, w(mo) = o (m-)o=),
ii) if u € w(mo) then S(t)[u] € w(mo) for all t > 0,
ii) if 4 € w(mo) then for any t > 0 there exists ¢’ s.t. S(t)[i'] = p.
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Convergence, step 1: invariance

Prove that m* € w(mo)
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Convergence, step 1: invariance

Prove that m* € w(mo)

Since w(mo) is compact, there is M € argmin V(m).

méew(mq)
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Convergence, step 1: invariance

Prove that m* € w(mo)
Since w(mo) is compact, there is M € argmin (.., V(m).

from iii) Vt > O there is p s.t. S(t)[u] = M and by Theorem 2 for any s > 0 we

get
V(S(t +s)[u]) < V(S(8)[u]) = V(m).
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Convergence, step 1: invariance

Prove that m* € w(mo)

Since w(mo) is compact, there is M € argmin ) V(m).

méew(mg
from iii) Vt > O there is p s.t. S(t)[u] = M and by Theorem 2 for any s > 0 we
get

V(S(t +s)[u]) < V(S(8)[u]) = V(m).

from ii) (invariance) S(t + s)[u] € w(mo) so V(S(t + s)[u]) > V(m)
(definition of m ).

By Theorem 2

- D __

o 2
0% Vi

dt DmF(ﬁ"LX)-F??(X)'F?VU(X) rﬁ(x) dx .

Due to the first order condition (Proposition 6) get M = m*.
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Convergence, step 2: HWI inequality

m* € w(mg) = 3I(my,) > m
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Convergence, step 2: HWI inequality

*

m* € w(mg) = 3I(my,) > m

We want to show that if mg, — m* then V7(my,) — V7(m™).
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Convergence, step 2: HWI inequality

*

m* € w(mg) = 3I(my,) > m
We want to show that if mg, — m* then V7(my,) — V7(m™).

But V=F+ %ZH and H only |l.s.c. So we need to show that

m™ log(m™) dx > lim sup/ my, log(my,) dx .
Rd

R n—00

4147



Convergence, step 2: HWI inequality [Otto and Villani, 2000]

Assume that v(dx) = e~¥®(dx) is a P»(RY) measure s.t. W € C3(RY), there
is K €R s.t. DV > Kly. Then for any € P(R?) absolutely continuous
w.r.t. v we have

K
Hiplr) < Watior) (VIGT) = 5 Walin))
where [ is the Fisher information:

wM:@hmﬁmlwy




Convergence, step 2: HWI inequality

We thus have
[, e (1o6(m) ~ tog(m")) o < Wa(img en®) (Vs + CWaimi '),
R

with

Ih:=E UV log (mtn(th)) — Vlog (m*(th)) ﬂ .
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Convergence, step 2: HWI inequality

We thus have

/]Rd me, ( log(m,) — Iog(m*)) dx < Wh(my,, m*)(\/E + OWVa(my,, m*))7

with
I, :=E UV log (mtn(th)) — Vog (m*(th)) H .

Need to show sup, I, < co (estimate on Malliavin derivative of the change of
measure exponential).
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Convergence, step 3

Have m;, — m* for some t, — oo. Moreover t — V/(m;) is non-increasing in t
so there is ¢ := limp— o0 V/(tn).

Use uniqueness of m™ and step 2 to show that any other sequence V/(m )
converges to the same ¢, w(mg) = {m*}, so Wh(m¢, m*) — 0.
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Exponential convergence

Theorem 4
If o is sufficiently large, there exists A > 0 s.t

Wa(mye, m*) < e Wh(mo, m*).

Proof see: [Eberle et al., 2019],[Hu et al., 2019a]

» New perspective on Lazy training paradigm.

45 /47



References |

[Belkin et al., 2018] Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2018). Reconciling modern machine learning
and the bias-variance trade-off. arXiv preprint arXiv:1812.11118.

[Bogachev et al., 2019] Bogachev, V., Rockner, M., and Shaposhnikov, S. (2019). On convergence to stationary
distributions for solutions of nonlinear fokker—planck—kolmogorov equations. Journal of Mathematical Sciences,
242(1):69-84

[Cardaliaguet et al., 2015] Cardaliaguet, P., Delarue, F., Lasry, J.-M., and Lions, P.-L. (2015). The master
equation and the convergence problem in mean field games. arXiv preprint arXiv:1509.02505.

[Carrillo et al., 2003] Carrillo, J. A., McCann, R. J., Villani, C., et al. (2003). Kinetic equilibration rates for
granular media and related equations: entropy dissipation and mass transportation estimates. Revista
Matematica Iberoamericana, 19(3):971-1018

[Chizat and Bach, 2018] Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for
over-parameterized models using optimal transport. In Advances in neural information processing systems, pages
3040-3050

[Eberle et al., 2019] Eberle, A., Guillin, A., and Zimmer, R. (2019). Quantitative harris-type theorems for diffusions
and mckean—-vlasov processes. Transactions of the American Mathematical Society, 371(10):7135-7173.

[Heiss et al., 2019] Heiss, J., Teichmann, J., and Wutte, H. (2019). How implicit regularization of neural networks
affects the learned function—part i. arXiv preprint arXiv:1911.02903.

[Hu et al., 2019a] Hu, K., Kazeykina, A., and Ren, Z. (2019a). Mean-field langevin system, optimal control and
deep neural networks. arXiv preprint arXiv:1909.07278.

[Hu et al., 2019b] Hu, K., Ren, Z., Siska, D., and Szpruch, L. (2019b). Mean-field langevin dynamics and energy
landscape of neural networks. arXiv preprint arXiv:1905.07769.

[Hwang, 1980] Hwang, C.-R. (1980). Laplace's method revisited: weak convergence of probability measures. The
Annals of Probability, pages 1177-1182.

[Mei and Montanari, 2019] Mei, S. and Montanari, A. (2019). The generalization error of random features
regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355.

46/



References Il

[Mei et al., 2018] Mei, S., Montanari, A., and Nguyen, P.-M. (2018). A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665-E7671.

[Neyshabur et al., 2017] Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Srebro, N. (2017). Geometry of
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071.

[Otto, 2001] Otto, F. (2001). The geometry of dissipative evolution equations: the porous medium equation.

[Otto and Villani, 2000] Otto, F. and Villani, C. (2000). Generalization of an inequality by talagrand and links
with the logarithmic sobolev inequality. Journal of Functional Analysis, 173:361-400

[Rotskoff and Vanden-Eijnden, 2018] Rotskoff, G. M. and Vanden-Eijnden, E. (2018). Neural networks as
interacting particle systems: Asymptotic convexity of the loss landscape and universal scaling of the
approximation error. arXiv:1805.00915.

[Tugaut et al., 2013] Tugaut, J. et al. (2013). Convergence to the equilibria for self-stabilizing processes in
double-well landscape. The Annals of Probability, 41(3A):1427-1460

47/



